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Abstract

The formation of nitrogen oxides {NO,) during pulverized-coal combustion in utility
boilers is governed by many factors, including the boiler’s design characteristics
and operating conditions, and coal properties. Presently, no simple, reliable
method is publicly available to estimate NO, emissions from any coal-fired boiler.
A neural network back-propagation algorithm was previously developed using a
small data set of boiler design characteristics and operating conditions, and coal
properties for tangentially fired boilers. This initial effort yielded sufficient
confidence in the use of neural network data analysis techniques to expand the
data base to other boiler firing modes. A new neural network-based algorithm has
been developed for all major pulverized coal-firing modes (wall, opposed-wall, cell,
and tangential) that accurately predicts NO, emissions using 11 readily available
data inputs. A sensitivity study, which was completed for all major input
parameters, yielded results that agree with conventional wisdom and practical
experience. This new algorithm is being used by others, including the Electric
Power Research Institute (EPRI). EPRI has included the algorithm in its new
software for making emissions compliance decisions, the Clean Air Technology
Workstation.

Introduction

The formation of nitrogen oxides (NO,) during pulverized-coal combustion in utility
boilers is governed by many factors, including the boiler’s design characteristics
and operating conditions, and coal properties. Presently, no simple, reliable
method is publicly available to estimate NO, emissions from any coal-fired boiler.
The authors previously showed that existing empirical methods were inadequate
for predicting NO, emissions from even a small data set of tangentially fired utility
boilers (1). To provide a simple, short-term, multi-purpose means to predict NO,
emissions from pulverized coal-fired utility boilers, a neural network back-
propagation algorithm was previously applied to a data set for nine tangentially
fired boilers (1). The purpose of this initial study was to assess the ability of a




neural network to reasonably predict NO, emissions for a qualified data set. As
previously reported (1), the algorithm developed by the Pittsburgh Energy
Technology Center (PETC) generally predicted NO, emissions to within +50 ppm
of actual values for the tangentially fired boilers in the limited initial data set.

The Electric Power Research Institute (EPRI) is developing a variety of software
tools to assist its member utilities with making decisions on how to comply with
the Clean Air Act Amendments of 1990 and the changing power generation
marketplace. Sargent & Lundy Engineers has developed the Clean Air Technology
(CAT) Workstation as the primary compliance decision tool for EPRI’s member
utilities. The CAT Workstation includes modules to comparatively evaluate various
emissions control technologies. After the 1993 Joint Symposium on Stationary
Combustion NO, Control, where the previous work was presented, EPRI expressed
an interest in using PETC’s neural network-based algorithm within the CAT
Workstation. However, because the data base upon which the initial algorithm
was developed was limited to tangentially fired boilers, PETC recommended
collection of additional data and development of a new NO, algorithm.
Subsequently, a Cooperative Research and Development Agreement (CRADA) was
implemented between PETC and EPRI to collect additional power plant data,
develop a new algorithm, and provide a copy of the coded algorithm to Sargent &
Lundy for inclusion in the CAT Workstation. This effort was initiated in early 1994
and concluded by mid-year 1994 to meet the deadline for release of the CAT
Workstation to EPRI’'s member utilities.

Technology-based standards, such as Reasonably Available Control Technology
(RACT), that require the installation of NO, control technologies on a boiler-by-
boiler basis are driving the emissions compliance strategies of U.S. utilities.
Carnegie Mellon University’s (CMU) Department of Engineering and Public Policy is
examining the potential cost savings achievable through NO, emissions trading, an
alternative market-based strategy to achieve federal and state goals for NO,
emission reduction (2). To estimate the potential cost savings achievable through
inter-utility NO, trading, CMU is using a combinatorial optimization approach to
identify boiler retrofits and operating parameters that yield the most cost-effective
means for NO, abatement (2). PETC’s new neural network-based algorithm for
predicting NO,, emissions was utilized by CMU to predict emissions from pulverized
coal-fired boilers in the Pittsburgh, Pennsylvania, area as part of its efforts. CMU
is continuing the development of its trading analysis software for NO, emissions
using PETC's algorithm to predict NO, emissions.

This paper summarizes the development of the new neural network-based
algorithm, including a review of the data base used in the effort and a sensitivity
study for the major input parameters. Planned efforts to significantly expand the
existing data base using data and information being collected by the U.S.
Environmental Protection Agency (EPA) from U.S. utilities, as required by the Clean
Air Act Amendments of 1990, is briefly discussed.




Neural Network Approach for Estimating NO, Emissions

Neural networks became popular in the 1980s for analyzing complex, interrelated
data sets. Neural networks do not assume that a relationship is known between
process input and output but rather try to determine the relationship by analyzing
data sets of input and output data. Neural networks, which can be viewed as a
nonlinear data analysis technique, are computational systems that use the
organizational principles of biological nervous systems. Computer scientists imitate
these principles because biological systems easily outperform all current
approaches for pattern recognition. The primary requirement for developing a
neural network is a complete data set. Also, the proper representation of the input
(e.g., a ratio of two variables may be the best representation) hastens the training
process.

Neural networks consist of several simple, highly interconnected data-processing
units. These units approximate the complex system of neurons and
electrochemical signals used by the human brain to process information (3). Each
of the neurons in the human brain functions like a tiny computer with limited
capabilities. Connected together, these cells form the most intelligent system
known. Neural networks are a relatively new class of computing systems formed
from hundreds of simulated neurons interconnected like the brain’s neurons. The
principal aim of the technology is to mimic nature’s approach for processing data
and information. The back-propagation algorithm developed independently by at
least three groups (4-6) is the most widely used neural network approach.

Neural networks are being used to solve real problems. For example, they have
been shown to be effective in estimating the fatigue life of mechanical parts (7),
performing fault detection in chernical plants (8), diagnosing automobile
malfunctions (9), and recognizing human speech (10). Neural networks are also
being widely applied within the power industry (3). During the last five years,
more than 200 technical papers discussing artificial intelligence applications in the
power industry have been published; more than one-half of these applications
involved the back-propagation algorithm (11). All of the above applications used
noisy data, where the relationships between input-output pairs were complicated
and poorly understood. Neural networks generally excel over traditional data
analysis techniques, such as multiple linear regression techniques, in analyzing
noisy data sets.

Commercial neural network software, Brainmaker Professional (Version 2.03) from
California Scientific Software, was used in this study. During the network
development process, the user defines the problem and collects the input-output
pairs. If the user neglects key input parameters for a particular application, the
predictive capabilities of the network will suffer. A neural network is not
programmed with rules like an expert system, but rather it "learns” in much the
same way that people do, i.e., by example and repetition.




After the input-output pairs are collected, the learning stage commences with the
network associating output data with input data. Each time an input is presented,
the network sends back an answer of what it thinks the output should be. When it
is wrong, the network corrects itself by changing the weight matrices that are
used to adjust the input-output relationships. Brainmaker Professional uses a back-
propagation algorithm to adjust these weight matrices. The training process is
repeated until the network derives answers that are within a user-specified
tolerance for all inputs. This learning process can take considerable time, possibly
up to several days or weeks, to complete depending on the complexity of the
problem and the processing speed of the computer used. The final weight
matrices are saved to file and can be used external to Brainmaker Professional to
predict outputs for other sets of input parameters.

Key to the training process in a neural network is the transfer function. Output is
determined by the network’s nodes, which combine signals sent to them by lower-
layered nodes and transfer these adjusted signals to higher-layered nodes. Neural
network nodes are designed to process signals with values between O and 1;
therefore, all input variables must be scaled to the unit interval. Nonlinear transfer
functions send signals from node to node within the network. The default transfer
function used by Brainmaker Professional is the sigmoid function:

1
&) 1 + exp(-x)

Figure 1 shows that the sigmoid function maps real numbers into the unit interval.
It is often called a "squashing function" because very large positive values are
asymptotically mapped to 1 and very large negative values are asymptotically
mapped to zero. The squashing function forces the network to focus on the bulk
of the data and to place less emphasis on the data at the extreme lower and upper
ends of a data set. Hence, network predictions are generally less accurate at the
data extremes.

A network stops training when its answers are within a user-specified tolerance.
This tolerance specification is applied to the data after it has been subjected to the
squashing function. The nonlinear nature of the squashing function often causes
extreme data values to deviate more from actual values than nonextreme data.
Typically, training is conducted at progressively smaller tolerance levels until the
deviation between predicted and actual values is acceptable by the user. The
value of acceptable deviation between the network answers and the actual data
depends upon the accuracy of the available input-output pairs. For exampile, if
inherent errors in the available input-output pairs limit their repeatability to 5%,
then training to a tolerance less than 0.1 is unwise. Although decreasing the
tolerance will force the network answers to more closely approximate the training
data, the network will not necessarily perform better on new data sets. Usually,
continued training at progressively smaller tolerances improves the network’s




performance to a point beyond which it deteriorates. Once confidence is obtained
in the predictive capabilities of the neural network, it is used to generate answers
for input sets with unknown outputs.

Definition and Scope of Study

To expand the initial data base, additional data were collected from a variety of
sources, including several electric utilities, the Utility Air Regulatory Group (UARG]),
and several projects within USDOE’s Clean Coal Technology Program. A total of
384 data sets from 36 pulverized coal-fired boilers were collected and used in this
study. Thousands of other data sets were also collected but were not usable
because they lacked key data inputs. Aiso, some data were coliected from
cyclone-fired utility boilers but were not analyzed because this effort was limited to
pulverized coal-fired boilers. Multiple data sets were available for some boilers
because of variations in operating conditions and coal type. Some boilers had
emissions data from burners originally installed when the unit was built. They
were either conventional or low-NO, burners, and low-NO, burners retrofitted at a
later date. Both pre- and post-NSPS (New Source Performance Standards) boilers
were included in the data set. Table 1 summarizes the characteristics of the
boilers in the available data set as a function of firing mode {e.g., wall, opposed-
wall, cell, tangential). No data were available from wall-fired units with low-NO,
burners, largely as a result of the limited time available to produce an algorithm for
inclusion in EPRI’'s CAT Workstation. The new tangentially fired boiler data
consisted of a few data sets from many boilers whereas the data for the other
boiler types consisted of many data sets from a few boilers. The capacity ranges
of the wall-fired boilers, opposed wall-fired boilers, and cell burner-equipped boilers
were limited compared to that of the tangentially fired boilers because attempts to
acquire additional data over a broader capacity range were unsuccessful during the
limited available time.

A number of possible input parameters, based on boiler design characteristics and
operating conditions, and fuel properties, were considered during development of
the new NO, algorithm. The objective was to use a limited number of simple,
readily available parameters as long as the predicted NO, values agreed reasonably
with actual emission values for a range of boiler types, boiler operating conditions,
and coal properties. The starting point for selection of the new input parameters
was the list of parameters used for the original NO, algorithm. However, data
availability precluded use of some of the original inputs and extension of the data
set to additional boiler types required inclusion of new parameters to adequately
describe the various boiler designs.

Table 2 summarizes the parameters that were eventually selected as input to the
new neural network. Furnace height, which is used to calculate the furnace
volumetric heat release rate, was defined in this effort as the distance from the
bottom of the ash hopper to the furnace roof (i.e., the overall boiler height). The




more standard definition for boiler height, which is the distance from the furnace
hopper knuckle to the furnace nose, was not used because detailed furnace
dimensions were not available for all units and time limitations did not permit
collection of this data from individual power stations. The year that the boiler first
became operational was used because recent boiler designs attempt to limit NO,
formation in conjunction with low-NO, burners. The year that the current burners
were installed was used as an indicator of the developmental status or maturity of
low-NO, burner technology. !t would be too difficult to use individual burner
design specifications for different manufacturers in this simplistic approach. The
ratio of boiler load to the boiler’s maximum continuous rating (MCR), along with
the plan area and volumetric heat release rates, are used to reflect a boiler’s overall
design and operating characteristics. Most utilities provided the NO, and excess
oxygen values at the economizer outlet; therefore, this emissions sampling location
was selected. Other utilities provided NO, and O, data at the boiler exit or stack.
However, there were fewer data sets with this information. Also, because leakage
of air into the exhaust system of a plant can not be distinguished from operating
conditions with higher excess air, stack emissions data are difficult to use.
Therefore, only data sets with the oxygen content in flue gas at the economizer
outlet were used in this study. No input parameter was used to address the
impact of over-fire air usage or mill firing pattern on NO, emissions because
sufficient data were not available for network training. While omission of these
parameters is recognized as a significant weakness because they are known to
have a major impact on NO, emissions levels, the previous effort yielded
reasonable NO, emissions estimates for a wide variety of boilers, boiler operating
conditions, and coal types without inclusion of this information.

Neural Network Results

Figure 2 compares the actual and estimated NO, emission values for the 346 data
sets used to train the network. The network was trained at a tolerance of 0.10,
i.e., training was complete when all of the scaled predicted values (i.e., from the
squashing function) agreed to within 10% of scaled actual values. As previously
stated, the nonlinear nature of the sigmoid function causes large deviations
between actual and estimated values at the extremes of the data. The greatest
difference between an actual NO, value and its corresponding estimated value is
263 ppm, which occurred for a measured NO, value of 1350 ppm (0% O, dry
volume basis). The standard error of estimate for the training data was 67 ppm.
Training at a smaller tolerance reduced the maximum deviation and the standard
error of estimate but the network performance degraded on the data that was
reserved for testing. As shown in Figure 2, the neural network’s maximum
estimate is 1150 ppm (0% O, dry volume basis). Increasing this value would
improve the fit for extremely high NO, emission values but would degrade the fit of
the nonextreme data. It was felt that minimizing the deviations between actual
and estimated NO, emissions for the bulk of the (i.e., nonextreme) data was more
important than minimizing deviations for the extremely high NO, emission values.




The standard error of estimate decreased from 67 ppm to 52 ppm if only the data
sets that had an actual NO, values less than 1150 ppm (0% O, dry volume basis)
were considered.

Figure 3 compares actual and estimated NO, emissions for the 38 data sets
reserved for testing by the neural network. These data sets represent the balance
of data sets in the master data set. The standard error of estimate for the test
data was 64 ppm. The greatest difference between a measured NO, value and its
corresponding estimated value was 156 ppm. This difference was again for a data
set with an extremely high actual NO, emission value.

Sensitivity of Input Variables

Although the prior study yielded a neural network that was very good at estimating
NO, emission values using readily available input data, little effort was placed on
assessing the reasonableness of the data trends predicted using the network
algorithm. To assess the sensitivity of the selected input parameters on NO,
emission trends, a series of numerical experiments were performed using the new
algorithm. While these experiments do not fully evaluate the accuracy of the
algorithm because actual data were not available for comparison in all cases, they
do reveal trends that agree with conventional wisdom and practical experience.
Also, they demonstrate how the algorithm can be used in various utility scenarios,
such as low-NO, burner retrofits and boiler operational changes. These sensitivity
analyses are not meant to describe trends that are universally applicable to all
pulverized coal-fired boilers but rather to show that, while the trends are generally
reasonable, specific analyses can yield results that require further explanation. To
simplify these analyses, input parameters were varied individually except when fuel
analysis effects were being assessed. As detailed in Table 3, four different
scenarios were analyzed:

1) a pre-NSPS 200 MW, wall-fired boiler built in 1955 and equipped with the
original burners

2) a pre-NSPS 200 MW, wall-fired boiler built in 1955 and hypothetically
retrofitted with low NO, burners in 1985

3) a pre-NSPS 180 MW, tangentially fired boiler built in 1967 and equipped with
the original burners

4) a post-NSPS 250 MW, tangentially fired boiler built in 1984 and equipped with
the original burners

At b-year increments from 1975 until 1990, the effect of retrofitting low-NO,
burners on NO, emissions is shown in Figure 4 for the pre-NSPS 200 MW, wall-
fired boiler built in 1955 and the pre-NSPS 180 MW, tangentially fired boiler built
in 1967. In this figure and all subsequent figures, the two dates in parentheses
indicate the year that the unit first commercially operated and the year that the
current (i.e., either original or retrofit burners) were installed. In this analysis, it




was assumed that other boiler improvements were implemented when the burners
were retrofitted to reduce the flue gas oxygen content at the economizer exit from
8.4% to 5.4% for the wall-fired unit and from 5.5% to 3.5% for the tangentially
fired unit. No other input parameter was varied. Figure 4 and subsequent figures
(where data were available) shows the excellent agreement between actual and
predicted NO, emission values. Retrofitting low-NO, burners in 1975 reduced the
emissions from the wall-fired unit and the tangentially fired unit by about 28% and
35% and in 1990 by about 38% and 38%, respectively. Interestingly, the same
38% reduction was predicted for both units when low-NO, burners were retrofitted
in 1990. It is not known whether this level of NO, reduction represents a limit
imposed by the limited available data set; additional sensitivity analyses need to be
performed for other units to investigate this issue. However, these trends
generally do agree with the observed ability of low-NO, burners to reduce
emissions. Also, essentially no improvement in the ability of low-NO, burners to
reduce emissions from the tangentially fired boiler was predicted over the period
from 1975 to 1990; other plants may show significantly different results.

One of the simplest, most cost-effective means to control NO, emissions from
pulverized coal-fired utility boilers is reducing the operating excess air level. The
effect of excess air level on NO, emissions from the above four units is shown in
Figure 5. In these numerical experiments, the excess air level was varied 2%
higher and lower than the actual reported value at the economizer exit of each
boiler. Significant changes in NO, emissions are predicted as the excess oxygen
content is varied for all units except the post-NSPS 250 MW, tangentially fired
unit, which has an actual NO, emission level of only 270 ppm (0% O, dry volume
basis). These trends generally agree with actual experience in these units and
other field measurements.

Fuel properties can have a significant impact on NO, emissions from pulverized-coal
combustion. Substantial differences in NO, emissions have been observed when
the coal being fired is changed or blended with other coals. The two coals fired in
the pre-NSPS 200 MW, wall-fired unit and the pre-NSPS 180 MW, tangentially
fired unit were selected for a numerical blending simulation. As shown in Table 3,
the coal burned in the wall-fired unit had a fixed carbon-to-volatile matter (FC/VM)
ratio of 1.42 and the coal burned in the tangentially fired unit had FC/VM of 1.29.
These two coals were numerically blended at ratios of 1/3, 1/1, and 3/1 to
produce simulated coals with compositions between the two actual coals. The
effect of FC/VM ratio on NO, emissions is shown in Figure 6. Significant changes
in NO, emissions are predicted for the two pre-NSPS units whereas the two units
with low-NO, burners are relatively insensitive to fuel properties. Some low-NO,
burner manufacturers claim that their burners are not sensitive to some fuel
properties, such as FC/VM ration, while others report significant sensitivity. Again,
other scenarios may show substantially different results.

Boiler design obviously has a major impact on NO, emissions. Generally, lower
furnace heat release rates will yield lower NO, emissions as a result of lower flame




temperatures and changes in burner/furnace aerodynamics. Figure 7 shows the
effect of plan area heat release rate on NO, emissions. In this analysis, changes in
the plan area heat release rate of £+5%, £10%, +15%, and +20% from the
actual design point for each boilers were evaluated. Also, the volumetric heat
release rate and other input parameters were held constant. Because the
volumetric heat release rate was held constant, these analyses reflect a change in
boiler design (e.g., to achieve lower plan area heat release rates, a unit will be
made wider and/or deeper while the unit height is decreased) not a change in boiler
firing rate (i.e., load). In general, the effect of plan area heat release rate was
minimal for all four units. This resuit seems contrary to practical experience but
can be partially explained by the fact that a change in boiler design to achieve
lower NO, emissions would likely change more than the plan area heat release rate.
This is supported by Figure 8, which shows a very strong effect of volumetric heat
release rate for all units except the post-NSPS 250 MW, tangentially fired unit.
This unit has very low actual NO, emissions. In this analysis, NO, emissions were
determined for incremental changes in furnace volumetric heat release rate of 5%,
10%, 15%, and 20% higher and lower than the actual design point for each boiler.
Because the two input parameters of plan area and volumetric heat release rate are
so strongly related, it is possible that only one of these inputs is required to
adequately describe the combined impact of firing rate and boiler design on NO,
emissions.

Future Work

The Clean Air Act Amendments of 1990 require most U.S. coal-fired power plants
to install continuous emissions monitoring (CEM) systems and to electronically
report the collected data to the U.S. Environmental Protection Agency on a
quarterly basis. EPA has collected up to a full year of data from some utilities and
several quarters of data from the remaining utilities. PETC has worked with EPA
on various NO, issues, including assessing the performance and cost of various
combustion and post-combustion control technologies. Discussions have been
held with EPA on acquiring the first year’s emissions data from all U.S. coal-fired
power plants equipped with CEMs to expand the data base for development of a
new NO, prediction algorithm. While this emissions data base would be unequalled
by any other, EPA is not authorized to collect all the related information required to
predict NO, emissions accurately. For example, EPA is not collecting all the boiler
design and coal property data that is used in the current NO, algorithm. Collection
of this data would require an effort that is beyond current resources. However,
several options to perform this task are still being considered.

PETC has also discussed similar efforts with EPRI to develop a neural network-
based NO, algorithm for gas- and oil-fired utility boilers. The Gas Research
Institute (GRI) has been using EPRI’s CAT Workstation, which includes PETC’s NO,
algorithm, as part of its market projections for natural utilization in coal-fired boilers




(12). GRI has expressed an interest in an algorithm to predict NO, emissions from
coal-fired boilers using natural gas co-firing or reburning.

PETC will continue to expand its current data base with a focus on including more
data from power plants that have retrofitted low-NO, burners. When sufficient
data are available, a new neural network-based NO,, algorithm will be developed
and supplied to existing and new users. PETC hopes to initiate some of the above
activities later this year, which will likely result in an improved algorithm for all
coal-fired boiler types.

Summary

A neural network has been developed to estimate NO, emissions for wall-fired
boilers, opposed wall-fired boilers, cell burner-equipped boilers, and tangentially
fired boilers. Eleven simple, readily available parameters were selected as input
parameters. The data base used in this effort consisted of boiler design
characteristics and operating conditions, and coal property data for 36 pulverized
coal-fired utility boilers. Some of these boilers were either originally equipped with
low-NO, burners or had been retrofitted with low-NO, burners. A sensitivity
analysis of the selected input parameters yielded trends that agree with
conventional wisdom and practical experience. Some of the current and future
applications for PETC’s neural network-based NO, algorithm were highlighted; the
most notable of the current applications is the algorithm’s inciusion in the Electric
Power Research Institute’s Clean Air Technology Workstation, which is the primary
tool for making emissions compliance decisions for its member utilities.

Disclaimer

Reference herein to any specific commercial product by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or
any agency thereof.
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Table 1

Boiler Database Information as a Function of Firing Mode

Firing Mode/ Wall Opposed Cell Tangential
Boiler Information Wall
Number of Boilers 6 6 3 21
Number of Units 0 3 1 4
with Low-NO, Burners
Number of Data Sets 77 96 55 156
Number of Units 1 0 0 9
with 2 Furnaces
Range of Boiler Capacity 175-200 265-688 610-1300 85-936
(Gross MW,)




Table 2

Input Parameters Selected for NO, Estimation Study

Parameter Range of Units
Values

Plan Area Heat Release Rate 0.4-3.3 MMBtw/{t?

Furnace Volume Heat Release Rate 3.4-29.7 KBtu/ft’

Firing Mode 1-4 -~

(1 =tangential; 2=wall; 3=opposed wall; 4=cell)

Number of Furnaces lor2 -

Year Unit First Commercially Operated 1951-1986 year

Year Burners Installed (Original or Retrofit Burners) 1951-1990 year

Flue Gas Oxygen Content at Economizer OQutlet 1.8-12.1 vol%,
dry basis

Load/Maximum Continuous Rating 0.53-1.12 MW /MW,

Coal’s Carbon-to-Hydrogen Ratio (C/H) 13.3-21.3 wt%/wt%

Coal’s Nitrogen Content 0.8-1.8 wt%,
dry basis

Coal’s Fixed Carbon-to-Volatile Matter Ratio (FC/VM) 1.0-3.3 wt%/wt%
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